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We present numrical results on the velocity autocorrelation function (VACF) 
C(t)=<v(t).v(O)) for the periodic Lorentz gas on a two-dimensional 
triangular lattice as a function of the radius R of the hard disk scatterers on the 
lattice. Our results for the unbounded horizon case (0 < R < xf3/4) confirm 1/t 
decay of the VACF for long times (out to 100 times the mean free time between 
collisions) and provide strong support for the conjecture by Friedman and 
Martin that the lit decay is due to long free paths along which a moving 
particle does not scatter up to time t. Even after new sets of long free paths 
become available for R <  1/4, we continue to find good agreement between 
numerical results and an analytically estimated lit decay. For the bounded 
horizon case (x/3/4~<R~<0.5), our numerical VACFs decay exponentially, 
although it is difficult to discriminate among pure exponential decay, exponen- 
tial decay with prefactor, and stretched exponential decay. 

KEY WORDS: Periodic Lorentz gas; velocity autocorrelation functions; 
long-time tails; billiards; diffusion coefficients; ergodic theory; chaos. 

1. I N T R O D U C T I O N  

T h e  p e r i o d i c  L o r e n t z  gas  cons is t s  o f  n o n - i n t e r a c t i n g  p o i n t  pa r t i c l e s  m o v i n g  

f reely  b e t w e e n  success ive  e las t ic  co l l i s ions  w i t h  f ixed d - d i m e n s i o n a l  h a r d  

spheres  ( h a r d  d isks  in t w o  d i m e n s i o n s )  a r r a n g e d  on  a p e r i o d i c  lat t ice.  I t  is 

a m o d e l  for  the  d i f fus ion  o f  l igh t  pa r t i c l e s  t h r o u g h  a c rys ta l  la t t ice .  I ts  

s imple  d y n a m i c s  b a s e d  o n  free iner t ia l  m o t i o n  a n d  e las t ic  re f lec t ions  of f  the  
h a r d  spheres  has  thus  far  a l l o w e d  for  b o t h  ana ly t i ca l  (1 3,15,16,18) a n d  
n u m e r i c a l  s tudies .  (4-7'9 14,17) 
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A principal goal in the study of the Lorentz gas is to understand the 
connection between the dynamics of its constituent particles and its statisti- 
cal properties. The main question is how its statistical, equilibrium or non- 
equilibrium, properties emerge from the motion of the particles. The proofs 
of its K-property (~ and Bernoulli-property (2) have significantly contributed 
to our understanding of this connection. The study of the Lorentz gas has 
also helped us gain more insight into non-equilibrium diffusion processes 
and their relation to an equilibrium statistical quantity, namely, the 
velocity autocorrelation function (VACF). In this paper, we will present 
extensive numerical results on the VACFs of the two-dimensional Lorentz 
gas, where hard disks are arranged on a triangular lattice. Our main focus 
will be on the long time decay of the VACFs. 

This paper is organized as follows. In Section 2, we review previous 
work, both analytical and numerical, on the VACF of the two-dimensional 
periodic Lorentz gas. In Section 3, after defining our goals, we present our 
numerical results, and discuss their significance. Finally, Section 4 sum- 
marizes our findings and poses some questions for the future. 

2. P R E V I O U S  W O R K  

Unless stated otherwise, all the results discussed below are for the two- 
dimensional periodic Lorentz gas on a square or triangular lattice, where 
the lattice constant is always set to one while R denotes the radius of the 
hard disk scatterers. We also assume that the speed [Iv(t)[[ of the moving 
particle remains constant and is set to unity. 

According to the Einste in-Green-Kubo formula, 2 the diffusion coef- 
ficient D is related to the VACF C(t)= ( v ( t ) .  v(0))  by 

1 
D - l i m  ~ ( I r ( t )  - r(0)l 2 ) 

=li+m {2 ~o' du C(u)-~ fondu C(u)} 

(2.1) 

(2.2) 

where r(t) and v(t) are the position and velocity vectors at time t of the 
moving particle, and ( )  is a statistical (or microcanonical ensemble) 
average over all possible initial conditions for the particle. The particle 

2 Without using linear response theory, one can derive this formula directly from the rela- 
tionship between the position vector r(t) and the velocity vector v(t) (i.e., r(t)-r(0)= 
~t o du v(u)) and a time-translational symmetry of the VACF. For more details, see ref. 12. 
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starts out from a position inside a Wigner-Seitz cell of the lattice with an 
initial velocity pointing in any possible direction. (v( t ) .v(O))  is then 
defined as 

<v(t) v(O)>=uf dOcosO dr duv( .... o)(t).v( .... o)(O) (2.3) 

where (r, u, ~b) are the coordinates for an initial condition: (r, u) specifies an 
initial position and ~ an initial velocity direction (refer to Section 3.2 for 
more detail). 

Since the diffusion coefficient D is defined in the limit where time t 
goes to infinity, the behavior of the VACF for large t is critical for deter- 
mining D. For example, if the VACF decays as lit  at long times, then the 
first integral in (2.2) diverges logarithmically and gives an infinite value to 
D, whereas if the VACF decays exponentially, both integrals in (2.2) yield 
finite values and D is well defined. This long-time behavior of the VACF 
is the main focus of this paper. 

When we discuss the statistical properties of the periodic Lorentz gas, 
a geometrical feature of the lattice called "horizon" becomes important. The 
Lorentz gas behaves differently when it has a "bounded (or finite) horizon" 
or an "unbounded (or infinite) horizon." A lattice has an unbounded 
horizon if there exist particle trajectories of infinite length along which a 
particle can travel through the lattice without ever colliding with any 
hard disk. For example, the square Lorentz gas has an unbounded horizon 
if the diameter of the disks is smaller than the lattice constant (i.e., 
0 < R < 0.5). For the triangular Lorentz gas, there exists a critical value 
Rc = x/~/4 for the radius of the disks that separates the unbounded horizon 
case (0 < R < Re) from the bounded horizon case (Re ~< R ~< 0.5). 

2.1. The Bounded Horizon Case 

2.1.1. Analytical Results. Not much is known rigorously about 
the VACF for either the bounded or unbounded horizon case. However, 
Bunimovich and Sinai, and later Bunimovich, Sinai and Chernov (3) 
obtained the following stretched exponential bound for a different type of 
velocity autocorrelation function E{v(n), v(0)} (hereafter the velocity 
n-correlation function or VNCF), which is a function of the number of 
collisions n instead of time t: 

]E{v(n), v(0)} ] ~<A exp(--Kn y) (2.4) 
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where A and x are positive constants and 1/2 ~< 7 ~< 1. The VNCF is defined 
as 

l f2R E{ v(n), v(0)} =~---~ ~/2 d~ cos ~b drv(r,~k)(n).V(r,~)(O ) (2.5) 

where the inner product v~r,+)(n)'v~r,+~(0) between the velocity V(r,+)(n) 
after the nth collision and the initial velocity V(r,~)(0) is averaged over all 
possible initial conditions for the particle starting on the perimeter (or 
circle) of a hard disk. Here r specifies an initial position along the circle, 
and ~b the angle between the direction of the initial velocity and the normal 
to the circle at the initial position. 

The average (2.5) is different from the average defined in (2.3) in two 
respects. First, in (2.5) the average is taken over initial conditions only on 
the perimeter of a disk, whereas in (2.3) the average is taken over initial 
conditions inside the Wigner-Seitz cell. Second, in (2.5) we are concerned 
with the velocity of the particle after the nth collision, while in (2.3) we are 
interested in the velocity v~ .... ~ (t) at time t, which is not simply related to 
vr Because of these differences, there is no simple relationship 
between the VNCF and the VACF and hence no rigorous upper bound for 
the VACF has been established. The bound (2.4) is, however, consistent 
with a finite value for the diffusion coefficient, and Bunimovich and Sinai ~ 
indeed proved that for a periodic Lorentz gas with a bounded horizon the 
diffusion coefficient exists and is finite. This in turn implies that the VACF 
for this case must decay faster than 1/t. 

2.1.2. Numerical Results: Overlapping Disk Case. A stretched 
exponential decay of an n-correlation function was found numerically by 
Casati, Comparin, and Guarneri ~4) for a square Lorentz gas with mutually 
overlapping disks of radius R = x/~/4 > 0.5. This system has a bounded 
horizon: the particle is, in fact, trapped inside a region bounded by four 
disks and does not diffuse throughout the lattice. The diffusion coefficient 
is therefore vanishing. The n-correlation function p(n) studied by Casati, 
Comparin, and Guarneri is not the VNCF of (2.5) but was found to 
behave as 

p(n) ,,~ C exp( -- 1.4n ~ (2.6) 

Since Bunimovich, Sinai, and Chernov ~3) proved the bound (2.4) for any 
n-correlation function, this result (2.6) is not consistent with their bound. 

Recently, Garrido and Gallavotti ~5) numerically obtained the VNCF 
for the square Lorentz gas with R = x//-5/4 but concluded that their data 
was not good enough to distinguish between exponential and stretched 
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exponential decays. The long-time decay of the VNCF for the square 
Lorentz gas with R > 0.5 therefore remains an open question. Garrido and 
Gallavotti also calculated the VACF for the same case and their results 
support either purely exponential decay or stretched exponential decay 
with a stretched exponent of 0.995. 

2.1.3. Numerical Results: Non-overlapping Disk Case. 

2.1.3.A. The VNCF. For  the triangular Lorentz gas, the horizon is 
bounded if v/3/4 ~< R ~<0.5. Machta and Reinhold (6) numerically studied 
the VNCF in this case and found it to behave as 

E{v(n),v(O)}~(-1)nAexp(--2n) (for ,v/3/4 ~< R < 0.5) (2.7) 

where A is a positive constant and 

2 -  1 - - 2 R + ~ / 1 - - Z R  
R (2.8) 

where 2 goes to zero as R approaches 0.5. A similar exponential decay of 
the VNCF was observed by Garrido and Gallavotti (5) in the square 
Lorentz gas with two sublattices of hard disks of two different sizes. 

At R = 0.5, where three adjacent disks touch each other, Machta and 
Reinhold found that 

E{v(n), v(0)} ~ ( - 1 ) "  B (at R = 0 . 5 )  (2.9) 
n 

where B,-~ 0.675. Machta (7) had previously argued that this 1In decay is 
largely due to a series of successive collisions of the particle with two adja- 
cent disks. The slow 1In decay then reflects a highly correlated nature of 
these collisions, analogous to the collisions between the parallel boundaries 
in a stadion as pointed out by Vivaldi, Casati, and Guarneri. (8) 

A similar 1In decay was observed by Bouchaud and Le Doussal (9) for 
the square Lorentz gas with R = 0.5, where four adjacent disks are tangent 
to each other. In this case, the VNCF was found to behave as 

B 
! 

E{v(n), v(0)} ~ ( -- 1) n - -  (2.10) 
n 

where B ' = 0 . 9 _ 0 . 1  which is very close to 4B/3 as we expect from a 
geometrical difference between the two lattices (i.e., four, instead of three, 
corners in a region bounded by four disks). 
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Machta and Reinhold also found the following scaling form to fit both 
(2.7) and (2.9): 

E{v(n), v(0)} ~ ( -- 1) n f (2n)  (2.11) 
n 

where f ( x )  ~ B as x ~ 0 and f ( x )  ~ C x  e x p ( - x )  with C ~ 4/re as x ~ ~ .  
Based on this scaling form, they suggested that the approach toward 
R = 0.5 may be regarded as a type of second-order phase transition, as also 
pointed out by Bouchaud and Le Doussal, ~9,x~ with 1/2 as a correlation 
"length" which diverges at R = 0.5. 

2 .1 .3 .B .  The  I/ACF. Through a numerical study of VACFs, Friedman 
and Martin (~'~2"13) found that for the triangular Lorentz gas with a 
bounded horizon, the VACF decays roughly exponentially. They also con- 
jectured (~2) that the VACF may have a pre-factor of t-~/2: 

C(t) ~ t 1/2 e x p ( - A t )  F( t )  (2.12) 

where F( t )  is an oscillatory function of t and A is related to the maximal 
Lyapunov exponent. We shall present some additional results on this 
exponential decay in Section 3.3.2. 

Garrido and Gallavotti (s) found that for the square Lorentz gas with 
two sublattices of hard disks of different sizes, the VACF decays roughly 
exponentially and that the decay rate is apparently uncorrelated to the 
maximal Lyapunov exponent. 

2.2. The Unbounded Horizon Case 

2.2.1. Analytical Results. For the Lorentz gas with an unbounded 
horizon, Bunimovich ~15) argued that the VNCF is also bounded by a 
stretched exponential as in (2.4) with possibly different values for A, x, 
and 7. Bunimovich, Sinai and Chernov (3) then proved that 1/2 ~< 7 ~< 1. 

Recently Bleher (16) has shown that under some natural assumptions 
on the free motion vector autocorrelation function, the limit distribution of 
the particle displacement 

r(t) -- r(0) (2.13) 
lim ( t in  t) 1/2 

is a Gaussian. This result is based on some conjectures and therefore not 
completely proven, but it is consistent with a l i t  decay for the VACF, and 
the diffusion coefficient D defined in (2.1) would be then infinite. 
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2.2.2. Numerical Results: Triangular Lorentz Gas. Based on 
a numerical study, Friedman and Martin ~11'12,13) proposed that for the 
triangular Lorentz gas with an unbounded horizon, the VACFs decay as 
1/t for large t. In the unbounded horizon case, for any time t, there exists 
a group of trajectories along which the moving particle never collides with 
any hard disk up to t. Friedman and Martin argued that these trajectories, 
or long free paths, are responsible for the 1/t decay. In fact, the lit 
dependence comes from the volume of a region in the phase space corre- 
sponding to these trajectories. Based on this argument, Friedman and 
Martin ~12'13) derived an analytical formula for the 1/t decay (see Sec- 
tion3.3.3), and the VACFs numerically obtained by Friedman and 
Martin ~2'~3) appeared to approach the behavior given by this formula. 
However, the agreement between the numerical results and this formula 
was not conclusive mainly because of the relatively short time range (up to 
t = 25z, where ~ is the mean free time which will be defined in Section 3.3) 
over which the VACFs were calculated. 

In Section 3, we will provide further numerical evidence to support 
this 1/t decay by extending the time range up to t =  100T so that an 
asymptotic behavior of the VACF can be examined. To probe into longer 
times, we choose smaller values for R, for which the values of the VACFs 
stay far above their noise level even at long times. If the VACF decays as 
lit and is not oscillatory, then the diffusion coefficient should diverge for 
the triangular Lorentz gas with an unbounded horizon. We will also 
provide a numerical evidence for this divergence of the diffusion coefficient 
in Section 3.3.3. 

2.2.3. Numerical Results: Square Lorentz Gas. 

2,2.3.A. The VNCF. For the square Lorentz gas with R<0 .5 ,  
Bouchaud and Le Doussal ~9) found the VNCF to decay as a stretched 
exponential: 

E{v(n), v(0)} ,-~ ( -- 1) n exp( --xn y) (2.14) 

where ~ = 0.86 +_ 0.06, log tr = - 0.27 (for R = 0.5), and log 1< = - 0.2 (for 
R = 0.05). This result is consistent with Bunimovich, Sinai, and Chernov's 
finding, ~3) 1/2 ~< 7 ~< 1. The exponent 7 was found to be independent of R. 
Garrido and Gallavotti ~5) also found that for the square Lorentz gas with 
R = 7 x//-2/40, the VNCF decays exponentially with different decay rates for 
even and odd values of n. 

2.2.3.B. The VACF. Friedman ~12) presented numerical results which 
suggest that the VACF for the square Lorentz gas with R = 0 . 4  (<0 .5)  
decays as lit as in the triangular Lorentz gas with an unbounded horizon. 
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Furthermore, Zacherl et al. (17) numerically obtained the power spectrum 
S(co) of the VACF for R = 0.05 and 0.225, and found S(co) to behave as 
[ln co[ for small o~ or low frequencies, consistent with a 1/t decay in the 
VACF. Using a random walk approximation, they also derived a 1/t decay 
for the VACF and a t In t divergence for the mean square displacement 
( I r ( t ) - r ( 0 ) l  2) for large t. Garrido and Gallavotti (5) also found that for 
the square Lorentz gas with R = 7 v/2/40, the VACF decays exponentially 
for short times up to t = 16r. 

3. N E W  R E S U L T S  

3.1. Goals 

From the above review of previous work, it is clear that the issue of 
the long time tails of the VACFs for the periodic Lorentz gas in two dimen- 
sions is yet to be settled�9 In particular, the l i t  decay for the unbounded 
horizon case has been neither rigorously proved nor conclusively supported 
by numerical evidence. Even for the bounded horizon case, we do not 
know with certainty whether the long time decay of the VACF is pure 
exponential, exponential with a t 1/2 prefactor, or stretched exponential. It 
is the main goal of this paper to numerically examine the long time decay 
of the VACF for the triangular Lorentz gas in both the bounded and 
unbounded horizon case. The main questions to be addressed are: 

(i) For the bounded horizon case, does the VACF decay as pure 
exponential, exponential with a t -1/2 prefactor, or stretched 
exponential? 

(ii) For the unbounded horizon case, does the VACF decay as l/t? 
If so, then is the 1/t decay due to the long free paths? More 
specifically, does the VACF follow the analytical formula given 
by Friedman and Martin? 

3.2. Numer ica l  M e t h o d  

We calculated the VACF by numerically evaluating the right hand 
side of 

�9 ~/~/2 COS ;~TCdF dlgv( .... +)(t).v( .... ~b)(0) (3.1)  v(t) v(O) =N I 

where the integral is taken over all initial conditions (r, u, ~b) for the 
moving particle and v~ .... r is its velocity at time t. Initial positions are 
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uniformly selected from a Wigner-Seitz cell (for the triangular lattice, it is 
a hexagon) except for the interior of the hard disk at the center. The 
directions of initial velocities are also uniformly chosen from all the 
possible directions of motion starting from each initial position. The speed 
Ilv(t)ll of the particle is always set to unity. The coodinates (r, u, ~b) are 
chosen as follows. Starting from an initial position, extend the velocity 
vector backwards until the vector hits the disk. At each side of the 
hexagon, periodic boundary conditions are assumed so that the particle 
reenters at the opposite side of the cell. The position r then specifies the 
location of the point of intersection measured in radians from a fixed 
point on the circle, u is the distance between the initial position and the 
point of intersection (or the time from the last collision up to the initial 
position, since the speed of the particle is unity), and ~b is the angle 
between the velocity vector and the normal to the circle at the point of 
intersection, r varies from 0 to 27r, u from 0 to r(r, ~b) which is the time 
when the particle starting on the circle with an initial condition (r, ~b) 
collides with another disk, and ~b from -re/2 to g/2. With these coor- 
dinates (r, u, ~b), the Liouville measure in the phase space is given by 
N cos ck d(~ dr du, where N is a normalization factor. 

After a change of varables (x = sin ~b) and exploiting the 6-fold rota- 
tional symmetry of the hexagon, (3.1) becomes 

(v(t)'v(O))=Nf_ldx /6dr duv( . . . . .  )(t) " V( . . . . .  )(0) (3.2) 

where ~r= (6R/zO(x/~/2_ zcR2) -1. Since v( ..... )(0) is independent of u (i.e., 
v( ..... )(0) = v(,,x)(O)), we can take V~r,x)(O) outside the innermost integral, 
and then using both the fundamental theorem of calculus and 

v( ..... )(t) --- v(r,0,x)(t + u) = dr(r,0,x)(t + u)/dt = dr(r,0,x)(t + u)/du (3.3) 

we obtain 

~V(/)" V(0)) = ]~ f l  dx  f~/6 dFV(r,x)( 0)" {r(r,o,x)(t + r(r, x ) ) -  r(r,0,x)(t)} 
1 ~0 

(3.4) 

Using this formula, the VACFs were calculated numerically by replacing 
the double integral with a discrete sum over 45002( = 2.025 x 107) (for a few 
cases, 100002(=1 x 108)) initial conditions uniformly selected from a 
regular grid in r-x plane. The computer program is written in double preci- 
sion FORTRAN, and generates trajectories for the particle with different 
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initial conditions by calculating the discrete T-map which takes the particle 
from one collision with a hard disk to the next exactly. 3 

3.3. N u m e r i c a l  Resu l ts  

All the VACFs will be presented as functions of time t measured in 
units of the mean free time 3, which is defined as 

1 f2n fn/2 dck cos ~br(r, ~b) 
z = ~-n~ Oo d r  ~/2 (3.5) 

Using 

R ar aO cos 0r(r, = R  o[2" ar aO cos O au 

where 2 n ( x / ~ / 2 -  7zR 2) is the volume of the phase space, we find 

r = ~  

(3.6) 

(3.7) 

When we compare  the VACFs for different values of  R, we must  keep in 
mind that  r increases as R decreases so that a faster decay of a VACF as 
a function of t/z may not necessarily mean a faster decay in real time t. 

We have calculated each VACF C(t) for t that is an integer multiple 
of z/8. We have chosen the values for the disk radius R to be 0.499, 0.48, 
and 0.44 for the bounded horizon case, and 0.4329, 0.42, 0.41, 0.4, 0.35, 0.3, 
0.2, 0.17, 0.16, and 0.125 for the unbounded horizon case (cf. the crossover 
radius Rc = x/~/4 -- 0.4330). To avoid redundancy, we will show our results 
only for R =0.499, 0.48, 0.44, 0.4329, 0.42, 0.4, 0.3, 0.2, 0.17, and 0.125 in 
this paper. 

All the computat ions were done on IBM RS6000 computers. The C P U  
time for calculating a VACF up to t = 100z depended rather strongly on 
the value of R (it was between 132 hours (R--0.499)  and 185 hours 
(R--0 .16)  with an average of 150 hours). 

Details of the algorithm for the T-map are given in ref. 12, though we have rewritten the 
program extensively to reduce the computation time. 
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3.3.1.  R o u n d o f f  Errors  and Sta t is t ica l  U n c e r t a i n t y .  As 
Friedman and Martin (13) have shown, round-off errors due to our algo- 
ri thm based on the discrete T-map are negligible and a main source of 
numerical error is the finite number  of  initial conditions. Note  that the T 
map is an analytically exact map  that maps a point where the particle 
collides with the disk to another  such point for the next collision and, 
unlike numerical integration of a differential equation, introduces only neg- 
ligible amount  of roundoff  errors for a typical length of the particle trajec- 
tories that we calculated using double precision. We expect the statistical 
uncertainty due to the finite number  of initial conditions to be roughly 
1 / ~  ~ 2.2 x 10 4 (or 1 / ~  ~ 1 x 10 4), where 45002 (or 100002) 
is the number  of the initial conditions we used. As we will show below, this 
estimate is close to the actual noise level ( ~ 3 - 4 x  10 4) found in the 
calculated VACFs. This further corroborates that the main source of 
numerical error is the finite number  of initial conditions. 

3.3.2.  The  B o u n d e d  Hor izon  Case: x/~/4<~R~<0.5. Figure l 
shows JC(t)[ for 100002 initial conditions. The envelope of the VACF 
decays exponentially up yo t ~ 30z. In this range, the VACF also oscillates 
alternately between positive and negative values with a period of roughly 
73. Beyond t ~ 4 0 z ,  the VACFs calculated with 45002 and 100002 initial 
conditions oscillate randomly around zero (see Fig. 2 for 100002 initial con- 
ditions) with a max imum amplitude of ~ 2 -  4 x 10 4 and ,-~ 1 - 3  x 10 4, 

# 

l~176 t 

1 0 4  

10  .2 

10  ̀ 3 

1 0  .4 

1 0  s 

0 

I , i , , ,  i . . . . .  

10  2 0  3 0  4 0  5 0  6 0  

t / ~  

Fig. 1. Absolute value of the VACF [C(t)[ as a function of time in man free time units for 
R = 0.499 with 1 x 108 initial conditions sampled. Three different fits to the maxima of [C(t)[ 
are also plotted. They are, from the top, 1.52(t/T) i/2 exp{--0.183(t/r)} (exponential with 
prefactor), exp{-0.32(t/z) ~ (stretched exponential), and 0.525exp{-0.205(t/z)} (pure 
exponential). 
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Fig. 2. 

0.001 ~ - r - -  1 
0.0005 [ 

0 

-0.0005 

-0.001 ! 

0 10 20 30 40 50 60 
t /z 

The V A C F  C(t) as a funct ion of t ime in m e a n  free t ime  uni ts  for R = 0.499 wi th  
1 x 108 ini t ial  cond i t ions  sampled.  

respectively, which are close to our estimated statistical uncertainty of 
1 / ~ ~  2.2 x 10 -4 and 1 / ~  ~ 1 x 10 -4, respectively. Therefore, 
the VACFs beyond t ~ 403 are completely drowned by statistical uncer- 
tainty. 

The origin of the periodic oscillation up to t ~ 403 was discussed by 
Friedman and Martin (13) who suggested that this oscillation is similar to 
that found in the VACF for a particle trapped in a square box. In their 
view, highly correlated motion inside a trapping region surrounded by 
three disks, also studied by Machta and Reinhold, is the cause for this 
periodic oscillation. Since the VACF for a square box has a t-1/2 prefactor 
in front of an exponential function, they also conjectured a t-~/2 prefactor 
for the VACF for the bounded horizon case. 

To test whether the VACF has a t 1/2 prefactor, we have plotted 
log{ t 1/2 I C(t)[} against t/3. Although t 1/2 [C(t)[ appears to decay exponen- 
tially over a slightly larger range in time (within an extra range between 
103 and 153) than [C(t)[ does (see Fig. 1), we can neither confirm nor reject 
a t -1/2 prefactor since we do not know exactly where the asymptotic 
behavior for the VACF starts. To determine the presence or absence of this 
t-1/2 prefactor, we must then calculate the VACF extremely accurately into 
further longer times, which would be virtually impossible because of its 
exponential decay. Even if the VACF were calculated at large t with high 
precision, the effect of the t -J /2  prefactor would be almost completely 
masked by the exponential decay. In fact, it is easy to fit a function 
t 1/2 e x p ( - a t )  over many decades with a pure exponential e x p ( - b t )  with 
b different from a. 
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To test whether the VACF can be fitted by a stretched exponential, we 
have fit log { ]log I C(t)ll} against t/r, yielding exp { - 0.32(t/~) o.9 }. Although 
this appears to better fit the numerical results over a slightly larger range in 
time (within an extra range between 10r and 15T) than by a pure exponen- 
tial (see Fig. 1), we can neither confirm nor reject a stretched exponential 
fit since we do not know exactly where the asymptotic behavior for the 
VACF starts. We here face the same difficulty as when we try to distinguish 
between a pure exponential and an exponential with a t 1/2 prefactor. In 
fact, it is easy to fit a function exp{-0.32(t/~')  ~ over many decades with 
a pure exponential. It is therefore beyond numerical approach to dis- 
criminate among exponential decay, exponential decay with a prefactor, 
and stretched exponential decay and should be resolved by an analytical 
study. 

Figure 3 shows a semi-logarithmic plot of IC(t)l for R = 0.48. Because 
the VACF for this case is less ordered than that for R = 0.499, it is more 
difficult to fit its envelope precisely. Nevertheless, the VACF appears to 
decay roughly exponentially with time up to t ~ 20r. Beyond t ~ 20r, the 
VACF oscillates around zero as statistical uncertainty masks the VACF. 
Up to t ~ 20r, it can also be fitted by an exponential with a t 1/2 prefactor. 
A stretched exponential decay cannot be ruled out, as well. 

The envelope of the VACF for R = 0.44, as shown in Fig. 4, also 
decays roughly exponentially up to t ~ 20r without regular oscillation. We 
cannot rule out a t 1/2 prefactor or a stretched exponential decay of 
the VACF. The VACF beyond t ~ 20T is again dominated by statistical 

Fig. 3. 
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A b s o l u t e  va lue  o f  the  V A C F  IC(t)l as a func t ion  o f  t ime  in m e a n  free t ime  un i t s  for  
R = 0.48 wi th  1 x 108 ini t ia l  c o n d i t i o n s  s ampled .  
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Fig. 4. Absolute value of the VACF I C(t)l as a function of time in mean free time units for 
R = 0.44 with 1 • l08 initial conditions sampled. 

uncertainty. Although the VACFs as functions of t/z appear to decay faster 
for smaller R, the VACFs as functions of t decay more slowly for smaller 
R with their exponential decay rates being roughly 2.4, 2.0, and 1.4 for 
R = 0.499, 0.48, and 0.44, respectively. This is consistent with our expecta- 
tion that for smaller R, the moving particle loses its past memory more 
slowly because of fewer collisions per unit time. 

Time-dependent diffusion coefficients D(t) were calculated for R =  
0.499, 0.48, and 0.44 by numerically integrating the right hand side of (2.2) 
up to time t. If the integrals in (2.2) converge to finite values, then diffusion 
coefficient exists. Figure 5 shows the inside of the parenthesis in (2.2) as a 
function D(t): 

D(t)= 2 I~ du C(u)-~ fo' Udu C(u) (3.8) 

D(t) for R = 0.499, 0.48, and 0.44 all converge to finite values as t is 
increased. The flatness of the curves of D(t) beyond t ,-~ 35r for R = 0.499 
and beyond t ~ 25z for R = 0.48 and 0.44 supports our assumption that the 
VACFs in these ranges are masked by statistical uncertainty. The diffusion 
coefficients derived from our VACFs are completely consistent with the 
numerical results by Machta and Zwanzig. {~4) 

3.3.3. The Unbounded Horizon Case: 0 < R < v / 3 / 4 .  Before we 
present our numerical results in this case, let us outline and extend the argu- 
ment for the 1/t decay of the VACF given by Friedman and Martin. {11.12,13) 
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Fig. 5. Time-dependent diffusion coefficient D(t) calculated from the VACFs for R = 0.499, 
0.48, 0.44, and 0.4329. Curves are, from the top at long times, for R = 0.4329, 0.44, 0.48, 
and 0.499. 

A crucial point  is tha t  as soon as the hor izon  opens  up  or  R becomes  less 
than  v/3/4 ,  there are certain directions in the lattice a long which the par -  
ticle can travel wi thout  ever colliding with any  of  the disks. In order  words,  
we have  open channels  or  corr idors  of  infinite length. F o r  1/4 ~< R < x/~/4,  
we have  twelve open channels  s tar t ing f rom a Wigner-Sei tz  cell. As R 
decreases further,  more  channels  open up  a long different directions. Fo r  
example,  for x / ~ / 2 8  ~< R < 1/4, twelve m o r e  channels  would  be introduced.  
Because the vo lume of  a region in the phase  space associated with the long 
free pa ths  in these channels  varies as l / t ,  these pa ths  cont r ibute  a l i t  t e rm 
to the V A C F  at  long times. Fo r  example,  for 1/4 ~< R < v/3/4 ,  F r i edman  
and Mar t in  (12' 13) ob ta ined  

(1) _24 R ( x / ~ / 4 -  R) 2 z 
C f " e e ( t ) -  ~z (x / /3 /2_ / rR2)  2 t (3.9) 

We can extend this result  to ob ta in  a cont r ibu t ion  to the V A C F  f rom a set 
of  long free pa ths  tha t  become  available for a range,  Rn ~< R < Rn + 1, where 
R ,  = v /3 / (4  x /n  2 -- n + 1 ). We can then est imate the 1/t decay due to all the 
avai lable long free pa ths  in Rn <~ R < R ,  + 1 to be 

Crree(t ) = F~ - (3.10) 
�9 i 1 t 

822/88/1-2-7 
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where 

24R (~/3/4 - R ~ i + 1) 2 
F i - w / ~ _ i + l  ( V / ~ / 2  _ / z R 2 )  2 (3.11) 

Of course, there are other contributions to the VACF from other parts of 
the phase space, and these may cancel the contribution from the long free 
paths. It is however possible that the other contributions would add up to 
an exponential decay, and thus only the lit decay survives at sufficiently 
long times. 

One notable point about ~n) C/~,.e(t) is that with a fixed value of t, it 
increases for smaller R. This means that if (3.9) and (3.10) give the actual 
asymptotic behavior of the VACFs, then with a smaller value of R, we have 
a better chance of observing the 1/t decay at long times, say at t = 100T, 
because then only the lit tail of the VACF can rise above the level of 
statistical uncertainty. Therefore, it is our strategy to calculate the VACF 
for various values of R, especially, for smaller values, and to test (3.9) as 
well as (3.10). By testing (3.10) as well, we will further substantiate the role 
of the long free paths along the open channels as the origin of the lit decay 
for the unbounded case. 
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Fig. 6. Absolute value of the VACF ]C(t)[ as a function of time in mean free time units for 
R=0.4329 with 2.025 • 107 initial conditions sampled. The analytical estimate for the lit 
decay C~!)~(t) is also plotted as a broken curve. 
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As another check for the 1/t decay, we will also plot D(t) defined in 
(3.8) against log~0(t), because if the VACF decays as 1/t, then D(t) should 
diverge as In(t). In studying the long time tail of the VACF for a disor- 
dered Lorentz gas, Lowe and Masters (19~ found that D(t) allowed them 
to probe into long times, where the u  itself becomes statistically 
indistinguishable from zero. 

3.3.3.A. 12 Open Channels: 1/4 ~< R < ~ / 4 .  For R just below the 
critical value Re. = x/~/4, it is very difficult to observe the lit decay in the 
VACF, because in this case the free-path contribution C}]~.e(t ) could be 
much smaller than the statistical uncertainty. In fact, as shown in Fig. 6, 
the VACF for R = 0.4329 appears very similar to that for R = 0.44 and 
decays roughly exponentially with time up to t ~ 15~, beyond which the 
VACF oscillates around zero as statistical uncertainty masks the VACF. 
D(t) for this case (see Fig. 5) also appears very similar to that for R =0.44 
and seems to converge to a finite value as t is increased. Therefore the 
transition between the bounded and unbounded horizon case is smooth 
and the emergence of the lit decay just below the critical radius is extremely 
difficult to detect. 
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Fig. 7. Absolute value of the VACF I C(t)l as a function of time in mean free time units for 
R = 0.42 with 2.025 x 107 initial conditions sampled. The analytical estimate for the 1/t decay 
C),!2~(t) is also plotted as a broken curve. 
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Figure7 shows a semi-logarithmic plot of IC(t)l for R=0.42.  The 
VACF initially decays roughly exponentially and then appears to follow 
the free-path contribution C}l)e(t) beyond t~20v,  although it exhibits 
apparently random fluctuations beyond t ~ 40v. However, the VACF fluc- 
tuates about C}~e)~(t) rather than around zero (see Fig. 8). This is different 
from the bounded horizon case, where the VACFs fluctuate around zero at 
long times because of statistical uncertainty (see Fig. 2). Although the size 
of C}~r,~(t) is close to that of statistical uncertainty, this behavior of the 
VACF nevertheless suggests the 1/t decay. Figure 10 shows that D(t) varies 
linearly in logl0(t) beyond t~20T, which adds further support for the lit 
decay. 

As discussed above, we should have a better chance of confirming the 
lit decay if we explore even smaller values of R. This has proven to be the 
case for the VACFs for R=0.41,  0.4, 0.35, and 0.3. Figure 9 shows the 
VACF for R = 0.3 as a representative case. The VACFs for R = 0.41, 0.4, 
0.35, and 0.3 all follow C~)~e(t) given by (3.9). Statistical fluctuations 
around C)~).~(t) are, in all the cases, roughly ~ 3 -  4 x 10 4 at most, which 
is consistent with the results for other values of R. D(t) also diverges 
linearly with log,0(t) in all the cases (see Fig. 10). 

0.001 

0.0005 

o 

v ] r 

-0.0005 

-0.001 

0 10 20 30 40 50 60 70 80 90 100 

t/'c 

Fig. 8. The VACF C(t) as a function of time in mean free time units for R = 0 . 2 4  with 
,~,(I ) l 2.025 • 107 initial conditions sampled. The analytical estimate for the 1/t decay ~#~(  ) is also 

plotted as a broken curve. 
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Fig. 9. The VACF C(t) as a function of time in mean free time units for R=0 .3  with 
2.025 x 1 0  7 initial conditions sampled. The analytical estimate for the lit decay C}~2~(t) is also 
plotted as a broken curve. 

3.3.3.B. 24 Open Channels: ~/~/28<~R<1/4. For V/~/28~< 
R < 1/4, we have two sets of twelve open channels, and Fig. 11 shows that 
the VACFs for R=0.17 follows C)~,),e(t) given by (3.10) beyond t~60r.  
Figure 10 also shows that in this range of time D(t) diverges linearly with 
lOgl0(t) for this case. We also calculated the VACFs for R = 0 . 2  and 0.16 
and obtained similar results. These results further strengthen the case for 
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Fig. 10. Time-dependent diffusion coefficient D(t) calculated from the VACFs for R = 0.42, 
0.4, 0.3, 0.2, 0.17, and 0.125. Curves are, from the top at long times, for R=0.125,  0.17, 0.2, 
0.3, 0.4, and 0.42. 
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Fig. 11. The VACF C(t) as a function of time in mean  free time units for R = 0 . 1 7  with 
2.025x 107 initial conditions sampled. The analytical estimates for the lit  decay (~) Cr,<,,,(t) 
(a broken curve) and (2) C);.ee(t ) (a solid curve) are also plotted. 

the lit  decay for the unbounded case, and also strongly supports that the 
origin of the lit decay is the long free paths along open channels. 

3.3.3.C. 36 Open Channels: v / ~ / 5 2  ~< R < x /~ /28 .  For ~ ' ~ / 5 2  ~< 
R < ,j/~-/28, we have three sets of twelve open channels, and Fig. 12 shows 
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Fig. 12. The VACF C(t) as a function of time in mean  free time units for R=0 .125  with 
2.025 x 107 initial conditions sampled. The analytical estimates for the 1/t decay (1) c)~<(t) 
(a broken curve), rl2) (t~ (the second solid curve), and (3) C)~,.<.(t) (the solid curve at the top) are ~J?eet ! 

also plotted. 



VACF for Triangular Periodic Lorentz Gas 101 

that the VACF for R=0.125 follows (3) Crrec.(t ) given by (3.10) beyond 
t~70r .  Figure 10 also shows that in this range of time D(t)  diverges 
linearly with logl0(t ). 

4. C O N C L U S I O N S  

In this paper, we have numerically examined the velocity autocorrela- 
tion functions (VACFs) for the periodic Lorentz gas on a triangular lattice. 
Our main focus has been on the long time tails or decays of the VACFs, 
especially, their dependence on the radius R of the hard disks on the lattice. 
Our results are: 

(i) For the bounded horizon case (v/3/4~<R~<0.5), the VACF 
appears to decay exponentially. Presence or absence of the t-1/2 
pre-factor cannot be determined conclusively from our numerical 
data, nor can a stretched exponential fit be confirmed or ruled 
out. 

(ii) For the unbounded horizon case ( 0 < R < x / ~ / 4 ) ,  the VACF 
decays as lit. The calculated VACFs closely follow the analytical 
formula (3.10) strongly supporting Friedman and Martin's con- 
jecture that the l i t  decay is due to the long free paths. The l i t  
decay is then a consequence of a geometrical feature of the 
system (namely, open channels), rather than a dynamical 
property. The emergence of the 1/t decay below Rc = x/~/4 there- 
fore cannot be regarded as a type of critical phenomenon. 

In order to observe the l / t  decay, we have calculated the VACFs not 
only over much longer time ranges (i.e., up to t = 100r) than previously 
attempted but also for smaller values of R so that the VACFs stay above 
the level of statistical uncertainty over long times. The logarithmic 
divergence of the diffusion coefficient D(t) up to time t further supports the 
1/t decay. 

Perhaps needless to say, more analytical work is still needed to clarify 
the nature of the long time decay of the VACF for both the bounded and 
unbounded horizon case. For the bounded horizon case, discrimination 
among purely exponential, exponential with a t -1/2 prefactor, or stretched 
exponential appears to be beyond the capability of this type of numerical 
calculation. For the unbounded horizon case, we now have a stronger case 
for the l i t  decay, but it is nonetheless highly desirable to have a rigorous 
proof for it or a rigorous bound for the VACF at long times. Numerically, 
it may be also possible to clarify the long time behavior of the VNCF for 
the unbounded case by choosing smaller values of R. 
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